High field (9.4 Tesla) magnetic resonance imaging of cortical grey matter lesions in multiple sclerosis.

نویسندگان

  • Klaus Schmierer
  • Harold G Parkes
  • Po-Wah So
  • Shu F An
  • Sebastian Brandner
  • Roger J Ordidge
  • Tarek A Yousry
  • David H Miller
چکیده

Multiple sclerosis is an inflammatory, degenerative disease of the central nervous system. The most obvious pathological change in multiple sclerosis is multifocal demyelination of the white matter, but grey matter demyelination may be of equal or even greater importance for its clinical manifestations. In order to assess the pathogenetic role of lesions in the grey and white matter, and to explore the association between demyelinated and non-lesional brain tissue, tools are needed to depict each of these tissue components accurately in vivo. Due to its sensitivity in detecting white matter lesions, T(2)-weighted magnetic resonance imaging at 1.5 T is important in the diagnosis of multiple sclerosis. However, magnetic resonance imaging at 1.5 T largely fails to detect grey matter lesions. In this study, we used T(2)-weighted magnetic resonance imaging at 9.4 T to detect grey matter lesions in fixed post-mortem multiple sclerosis motor cortex. Furthermore, we produced T(1), T(2) and magnetization transfer ratio maps, and correlated these indices with quantitative histology [neuronal density, intensity of immunostaining for myelin basic protein (reflecting myelin content) and phosphorylated neurofilament (reflecting axonal area)] using t-tests and multivariate regression. In 21 tissue samples, 28 cortical grey matter lesions were visible on both T(2)-weighted magnetic resonance imaging and sections immunostained for myelin basic protein, 15/28 being mixed white and grey matter and 11/28 subpial cortical grey matter lesions; 2/28 cortical grey matter lesions involved all layers of the cortex. Compared with non-lesional cortex, cortical grey matter lesions showed reduction of neuronal density (98/mm(2), SD = 34/mm(2;) versus 129/mm(2), SD = 44; P < 0.01), phosphorylated neurofilament (1/transmittance = 1.16; SD = 0.09 versus 1.24; SD = 0.1; P < 0.01) and magnetization transfer ratio (31.1 pu; SD = 11.9 versus 37.5 pu; SD = 8.7; P = 0.01), and an increase of T(2) (25.9; SD = 5 versus 22.6 ms; SD = 4.7; P < 0.01). Associations were detected between phosphorylated neurofilament and myelin basic protein (r = 0.58, P < 0.01), myelin basic protein and T(2) (r = -0.59, P < 0.01), and neuronal density and T(1) (r = -0.57, P < 0.01). All indices correlated with duration of tissue fixation, however, including the latter in the analysis did not fundamentally affect the associations described. Our data show that T(2)-weighted magnetic resonance imaging at 9.4 T enables detection of cortical grey matter lesion in post-mortem multiple sclerosis brain. The quantitative associations suggest that in cortical grey matter T(1) may be a predictor of neuronal density, and T(2) of myelin content (and-secondarily-axons). Successful translation of these results into in vivo studies using high field magnetic resonance imaging (e.g. 3 T and 7 T) will improve the assessment of cortical pathology and thereby have an impact on the diagnosis and natural history studies of patients with multiple sclerosis, as well as clinical trial designs for putative treatments to prevent cortical demyelination and neuronal loss.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting multiple sclerosis cortical lesions post-mortem using 7 Tesla Magnetic Resonance Imaging

Introduction: Although originally considered a white matter (WM) disease, it is now clear that focal cortical grey matter (GM) pathology is an important component of multiple sclerosis (MS). Presently available magnetic resonance imaging (MRI) techniques fail in detecting the actual amount of cortical lesions (CLs). The reason for such a failure is twofold: (i) the small size of CLs relative to...

متن کامل

3 Tesla and 7 Tesla MRI of multiple sclerosis cortical lesions.

Cortical lesions are prevalent in multiple sclerosis but are poorly detected using MRI. The double inversion recovery (DIR) sequence is increasingly used to explore the clinical relevance of cortical demyelination. Here we evaluate the agreement between imaging sequences at 3 Tesla (T) and 7T for the presence and appearance of individual multiple sclerosis cortical lesions. Eleven patients with...

متن کامل

Increased cortical grey matter lesion detection in multiple sclerosis with 7 T MRI: a post-mortem verification study.

The relevance of cortical grey matter pathology in multiple sclerosis has become increasingly recognized over the past decade. Unfortunately, a large part of cortical lesions remain undetected on magnetic resonance imaging using standard field strength. In vivo studies have shown improved detection by using higher magnetic field strengths up to 7 T. So far, a systematic histopathological verifi...

متن کامل

The Optimization of Magnetic Resonance Imaging Pulse Sequences in Order to Better Detection of Multiple Sclerosis Plaques

Background and objective: Magnetic resonance imaging (MRI) is the most sensitive technique to detect multiple sclerosis (MS) plaques in central nervous system. In some cases, the patients who were suspected to MS, Whereas MRI images are normal, but whether patients don’t have MS plaques or MRI images are not enough optimized enough in order to show MS plaques? The aim of the current study is ...

متن کامل

Grey matter pathology in multiple sclerosis.

Although multiple sclerosis (MS) has been considered a white matter disease, MS lesions are known to occur in grey matter. Recent immunohistochemical studies have demonstrated extensive grey matter demyelination in chronic MS. The most common lesion type consists of purely cortical lesions extending inward from the surface of the brain, this lesion subgroup is grossly underestimated by standard...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain : a journal of neurology

دوره 133 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2010